Contents lists available at ScienceDirect

Journal of Molecular Catalysis A: Chemical

journal homepage: www.elsevier.com/locate/molcata

Experimental and theoretical characterization of NO_x species on Ag/ α -Al₂O₃

Hanna Härelind Ingelsten^{a,b,*}, Anders Hellman^{a,c}, Hannes Kannisto^{a,b}, Henrik Grönbeck^{a,c}

^a Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

^b Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

^c Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

ARTICLE INFO

Article history: Received 15 May 2009 Received in revised form 26 August 2009 Accepted 28 August 2009 Available online 6 September 2009

Keywords: Ag/Al₂O₃ NO_x surface species DRIFT DFT

ABSTRACT

The adsorption of NO_x species on α -alumina and Ag/ α -alumina is investigated by *in situ* diffuse reflection infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations. The vibrational spectra obtained by DRIFTS experiments show broad spectral bands in the range between 1650 and 1200 cm⁻¹. The absence of distinct features is attributed to the heterogeneity of powder samples, i.e., variation in Ag cluster size and α -alumina surface termination. DFT calculations are employed to evaluate ground-state structures and vibrational wavenumbers of different NO_x species adsorbed either on alumina or Ag₁–Ag₄ clusters supported on alumina. In agreement with experiments, Ag cluster size and surface termination strongly influence the calculated vibrational properties. Although, an unambiguous identification of surface species from the DRIFT spectra is difficult, the theoretical results provide valuable guidance. As such, this approach has the potential to further increase the understanding of the reaction mechanism during hydrocarbon assisted selective catalytic reduction (HC-SCR) of NO_x.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The demand for decreased CO₂ emissions in combination with stringent NO_x regulations, call for alternative automotive regulations after-treatment systems. Combustion in oxygen excess, as in diesel- and lean-burn engines, significantly improves the fuel efficiency and thereby effectively reduces the CO₂ emissions. However, the oxygen rich exhaust gas obstructs the NO_x reduction ability of the generally used three-way catalyst (TWC). One promising technique to reduce NO_x in oxygen excess is hydrocarbon assisted selective catalytic reduction (HC-SCR). In particular, Ag supported on alumina has shown high activity for this reaction, see *e.g.* [1,2]. The Ag/Al₂O₃ system has been extensively studied in the scientific literature and it has, for instance, been shown that the active sites consist of very small silver clusters, Ag_n with n < 8 [2]. Although numerous experimental studies have clarified issues concerning this system, the state and structure of the Ag clusters remains elusive; metallic silver, silver oxides and silver aluminate phases have all been suggested [1,2].

In order to improve the performance of a catalyst, fundamental knowledge as to the nature of its catalytic activity is desirable. Spectroscopic methods, like IR spectroscopy, have traditionally been one of few experimental techniques able to follow the formation of intermediate species and reaction products on catalytic surfaces. Assignments of spectral features are, however, in most cases not straight forward. One example is NO_x chemistry on metal oxides, which include several different surface species, resulting in many, often overlapping, bands within a narrow wavenumber interval [3]. Assignments are often based on common knowledge derived from IR spectra obtained for NO_x on other metal oxides and may, therefore, not be applicable in the specific case. First-principles calculations of vibrational properties are one possible approach to this problem. This method has been used to characterize the vibrational properties of nitrite- and nitrate-surface species adsorbed on barium oxide (BaO) [4-6]. However, it should be realized that the validity of first-principles results are restricted by the choice of model catalyst. Hence, an inter-play between theory and experiment is often necessary.

In the present work, *in situ* diffuse reflection infrared Fourier transform (DRIFT) spectroscopy is used to monitor NO and NO₂ adsorption and the evolution of NO_x surface species on α -alumina and Ag/ α -alumina powder samples. The evaluation of IR spectra is discussed in relation to results from first-principles calculations based on the density functional theory (DFT). The model catalyst in this work (experimental and theoretical) is α -alumina as this is an alumina phase with a well-defined structure. The stable surface of this phase is (0001) [7,8]. Experiment and theory agrees that this facet is Al-terminated under ultra-high vacuum conditions, although other terminations can be present under ambient conditions [9]. To account for the various possibilities, three different

^{*} Corresponding author at: Applied Surface Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. Tel.: +46 0 31 7722959; fax: +46 0 31 160062.

E-mail address: hannahi@chalmers.se (H.H. Ingelsten).

^{1381-1169/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2009.08.022

surface terminations will be considered and vibrational properties of NO_x surface species on α -alumina with and without silver are calculated.

2. Theoretical methods

The first-principles study was performed using the DFT as implemented in DACAPO [10,11]. The Kohn–Sham wavefunctions were expanded using plane-waves with a kinetic energy cutoff of 25 Ry, whereas a 50 Ry cutoff was used for the charge density grid. Ultra-soft pseudo-potentials [12] were used to describe the interaction between the valence electrons and the ionic cores. The exchange-correlation was treated within the generalized-gradient approximation (GGA) level, by the use of the spin-polarized parameterization according to Perdew, Burke and Ernzerhof (PBE) [13]. The (charged) nitrite and nitrate are calculated using a positive jellium background. The structure relaxations were performed within the quasi-Newton method, using the Hellmann–Feynman theorem for the force calculations. The ionic positions were optimized until the total residual force was less than 0.05 eV/Å.

The vibrational modes and energies were determined by diagonalization of the dynamical matrix that was defined within the harmonic approximation:

$$\mathbf{D}_{ij} = (m_i m_j)^{-1/2} \frac{\delta \mathbf{F}_j}{\delta \mathbf{u}_i}.$$

Here, \mathbf{u}_i is the displacement vector of the appropriate atom from its equilibrium position, *i* and *j* are composite indexes that specify both atom and coordinate. m_i is the atomic mass and \mathbf{F}_j is the force component in the direction of \mathbf{u}_i . In these calculations, the coordinates of substrate atoms were frozen and only adsorbate atoms were displaced. The force derivatives were calculated by means of a central difference approximation, with a displacement of 0.05 Å. The frequencies σ_{λ} were given by the eigenvalues σ_{λ}^2 , and the normal modes by the eigenvectors \mathbf{c}_{λ} of the dynamical matrix, respectively, where λ is the mode index.

The α -Al₂O₃(0001) surface was modelled in a slab geometry, with a 2×2 repeated lateral periodicity and separated by a vacuum distance of 12 Å. Five Al₂O₃ (tri) layers were used to describe the surface, of which the two top layers were allowed to relax. The k-point sampling was preformed with a (2,2,1) Monkhorst-Pack grid [14]. Adsorption was allowed on one of the two slab surfaces, and the electrostatic potential was adjusted accordingly [15]. Three different surface terminations were considered, namely Alterminated which is the most stable one in UHV conditions [8], hydroxyl-terminated in which the top Al atom was substituted with three hydrogen atoms placed on top of the surface oxygen atoms in each surface unit cell [7], and partially O-terminated in which one out of four top Al atoms was removed. On the different terminations, silver clusters ranging between 1 and 4 atoms were supported. The adsorption sites of α -Al₂O₃(0001) are labeled according to common convention; i.e., the atom type immediately below the adsorption site and its corresponding surface layer determines the labeling. Ground-state structures, adsorption energies and vibrational energies of several NO_x species were calculated on all considered terminations and cluster sizes.

As reference, vibrational energies [16,17] for gas-phase NO_x are (with experimental values in parenthesis): for NO the internal vibration is 1968 (1904) cm⁻¹, while for NO_2 the asymmetric and symmetric stretch modes are 1736 (1618) and 1358 (1318) cm⁻¹, respectively. The bending mode is 717 (750) cm⁻¹. In the case of NO_3 , the doubly degenerated asymmetric N–O stretch is 1291 (1492) cm⁻¹, the symmetric stretch is 1102 (1050) cm⁻¹, and finally the umbrella mode is 749 (762) cm⁻¹. Furthermore, for NO_2^- the asymmetric- and symmetric-stretch modes are 1224 and 1122

(1268, 1241) cm⁻¹, respectively. In the case of NO₃⁻, the (twofold degenerated) asymmetric N–O stretches is 1366 cm⁻¹ and the symmetric stretch is 1010 cm⁻¹.

3. Experimental methods

3.1. Catalyst preparation

The samples used in this study were 1 wt% Ag/ α -Al₂O₃ and α -Al₂O₃. The Ag/ α -Al₂O₃ sample was prepared using the method described in detail by Kylhammar et al. [18]. Briefly, the alumina powder (aluminium oxide alpha 99.99%, Johnson Matthey) was mixed with an aqueous solution of silver EDTA complexes (EDTA:AgNO₃ in 2.2:1 molar ratio) under continuous stirring and keeping the pH constant at 6.3. The as prepared slurry was stirred for 1 h and subsequently freeze-dried and calcined in air at 600 °C for 6 h. The α -Al₂O₃ sample was also calcined in air at 600 °C for 6 h.

3.2. In situ DRIFTS experiments

In situ FTIR (Fourier transform infrared) spectroscopy measurements were carried out using a BioRad FTS 6000 spectrometer equipped with a Harrick Praying Mantis DRIFT reaction cell [19,20]. The gases, Ar, O₂, NO and NO₂, were introduced via separate mass flow controllers (Bronkhorst Hi-Tech) to the DRIFT cell and the gas composition after the cell was probed using a quartz capillary and continuously measured by a quadrupole mass spectrometer (Balzers QMS 200).

The samples were initially pre-treated in oxygen (8% O₂ in Ar, 500 °C, 30 min) and then evacuated in pure Ar (500 °C, 15 min) at a total flow rate of 150 ml/min. Background spectra (50 scans at a resolution of 1 cm⁻¹) were collected under Ar exposure and fresh samples were used for all experiments. Adsorption of NO or NO₂ (1000 ppm in Ar) was performed at 25 °C on the α -Al₂O₃ and Ag/ α -Al₂O₃ samples, respectively. The evolution of surface species during the adsorption was followed by DRIFTS for 30 min (2 scans/min at a resolution of 1 cm⁻¹).

4. Results

4.1. Theoretical characterization of the Ag–alumina system and of NO_x surface species

The Al-terminated α -Al₂O₃(0001) is constructed by cleavage through the middle of an alumina layer in the hexagonal unit cell, thus creating a surface terminated with one single Al atom per surface unit. The OH-terminated surface is constructed by replacing the top-most Al atoms and terminating dangling bonds with H atoms (three H atoms per Al atom). To model the partially O-terminated surface, one Al atom on the (2 × 2) Al-terminated surface is removed. In this way, 25% of the surface is oxygenterminated.

All three terminations of the $(0001) \alpha$ -Al₂O₃ surface exhibit large surface relaxations. The results for the surface relaxations are in good agreement with previous studies [8,21]. For the hydroxylterminated surface, we find that one of the OH groups lie essentially parallel, whereas the other two are perpendicular to the surface plane [22]. Calculations of the vibrational properties yield O–H stretching modes with an average wavenumber of ~3720 cm⁻¹, which is in agreement with previous reports [7]. The partially Oterminated surface should be viewed as a model for a surface defect. Although the O-termination is unstable in any atmosphere, it may be allowed at the interface between Ag and Al₂O₃(0001). Furthermore, there is a possibility that similar structure defects are frozen

Fig. 1. Ground-state structures of Ag₄ supported on α -Al₂O₃ (top row). NO₂ adsorbed on Ag₄/ α -Al₂O₃ (bottom row). The α -alumina surface terminations are: Al-terminated (left column), OH-terminated (middle column) and partially O-terminated (right column). Color code: hydrogen (white), nitrogen (blue), oxygen (red), aluminium (pink), silver (light blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

into the alumina matrix during the preparation of the ${\rm Ag}/{\rm Al_2O_3}$ catalysts.

The adhesion energies of Ag clusters supported on Alterminated. OH-terminated and partially O-terminated Al₂O₃(0001) surface as a function of cluster size have been reported previously [17]. In short, the calculated adhesion energy increases from 0.67 to 1.88 eV as cluster size increase from one to four Ag atoms on the Al-terminated alumina whereas on OHterminated alumina, the adhesion energy range between 0.29 and 1.12 eV. The Ag clusters supported on the partially O-terminated surface have high adhesion energy that range between 5.5 and 6.8 eV. The results show a strong preference for Ag cluster to adsorb on the partially O-terminated Al₂O₃(0001) surface. This is not surprising as the Ag cluster functions as a substitute for the missing Al atom. The relatively weak adhesion energy found on the Al-terminated and OH-terminated surfaces indicates that the Ag clusters are mobile on these surfaces.

In agreement with previous studies [21], the most favorable adsorption site for Ag₁ is above Al4 coordinating to three O ions. Ag₂ adopts a configuration that bridge Al4 and Al3 sites whereas Ag₃ forms an almost equilateral triangle, coordinating with only two atoms to the surface. Ag4 adopts a planar structure where the atoms are above 2 Al1, 1 Al3 and 1 Al4 sites (see Fig. 1a). The geometries of the supported clusters reassemble the gas-phase structures and the Ag-Ag distances are in all cases within 0.1 Å of the gas-phase counterpart [23]. On OH-terminated alumina, the ground-state structure for each cluster size is close to the corresponding gasphase cluster and in all cases the clusters are coordinating to the surface via one single Ag atom, yielding structures perpendicular to the surface (see Fig. 1b). The strong interaction calculated for Ag clusters supported on the partially O-terminated surface is reflected in the ground-state structures. The Ag-Ag distance for Ag₂ is increased by ~ 0.2 Å as compared to the gas-phase structure. For Ag₃ the smallest Ag–Ag distance increases by \sim 0.1 Å and the shape changes to an equilateral triangle. A pronounced structural rearrangement is calculated for Ag₄, which forms a pyramid-like structure with an Ag-Ag distance of 2.7-2.8 Å (see Fig. 1c). In all cases, the Ag cluster moves closer to the O-terminated surface as compared to the Al- and OH-terminated surfaces. The smallest Ag-O distance range between 2.0 and 2.1 Å. The short bond distances observed indicate that Ag adsorbed on the O-terminated surface is oxidized (the Ag–O bond distance in bulk phase Ag₂O is reported experimentally to be 2.04 Å [24]).

NO, NO₂ and NO₃ adsorption are considered on all clusters and surface terminations. Considering first the bare alumina, several adsorption configurations can be envisioned. In Fig. 2a-g seven different geometries for NO₂ are shown. On the Al-terminated surface, our calculations show that the semi-bridging nitrito (Fig. 2c) is the stable configuration. Recent first-principles molecular dynamics [25] reveal that the NO₂ remains in a semi-bridging nitrito configuration at elevated temperatures, even though NO₂ occasionally can exist in a monodentate nitrito configuration (Fig. 2b). The bridging bidentate nitrito (Fig. 2d) is not possible on Al₂O₃ due to the large spatial separation (4.9 Å) between surface Al atoms. Structures a, e, f and g are not minima on the potential energy surface. The OHterminated surface is passivated by the OH groups to that extent that none of the adsorption configurations shown in Fig. 2a-g are relevant. Instead the adsorption can be considered as a weak nondirectional physisorption. As the partially O-terminated surface is unstable in any atmosphere [17], NO₂ adsorption is not considered on this termination.

For NO₃, Fig. 2h–l shows five possible adsorption configurations. Calculations show that a semi-bridging nitrato configuration is the preferred geometry (Fig. 2j). All other configurations are unstable (Fig. 2h–i and l) or not possible (Fig. 2k) for the same reason as the corresponding structure for NO₂. Recently, it was suggested [26] and later confirmed [27] that NO_x species pair up on BaO via a surface mediated electronic mechanism (Fig. 2m and n). The pairing mechanism changes the thermodynamic equilibrium in the disproportion reaction between $2NO_2 \rightarrow NO + NO_3$, with a preference for the right-hand side. The present calculations uncover that the mechanism is valid also on Al_2O_3 . However, the effect is considerably smaller and amounts to 0.2 eV (Fig. 2n). For BaO the pair configuration is preferred over two NO₂ by 0.6 eV [26].

The suggested configurations in Fig. 2 are also relevant for the discussion of NO_x adsorption on supported Ag clusters. For instance, calculations show that NO_2 prefer a bridging bidentate nitrito (using one Ag atom and one Al atom) configuration on all investigated Ag clusters supported on the Al-terminated surface. Geometries where NO_2 only binds to Ag are at least 0.7 eV higher

Fig. 2. Possible configurations of NO_x surface species.

in energy [17]. For the OH-terminated alumina, NO₂ is adsorbed in an atop position on the Ag₁, whereas for Ag_n, n = 2-4 NO₂ prefer bridge positions including only Ag atoms. This is in close analogue with adsorption geometries on gas-phase Ag clusters [23]. In the case of a partially O-terminated alumina, NO₂ prefer a nitro (Fig. 2a) configuration on the monomer. For the larger supported clusters, NO₂ favors a bridging bidentate nitrito (coordinated towards one Ag atom and one Al atom) configuration. The adsorption geometries for NO₂ on supported Ag₄ clusters are shown in Fig. 1d–f. The adsorption configuration of NO₃ follows that of NO₂, with the exception of Ag₁ supported on partially O-terminated Al₂O₃. In that case, NO₃ prefers a chelating bidantate nitrato structure.

The adsorption energy for the different NO_x species on the three considered termination of alumina is presented in Table 1. The table clearly shows that there is strong dependence on the actual termination of the α -Al₂O₃ surface. For instance, in the case of the Al-terminated surface, the adsorption energy of NO₂ range between 0.5 eV (clean) and 3.0 eV (Ag₁), whereas for the OH-terminated surface the adsorption energy range between $\sim 0 \text{ eV}$ (clean) and 2.2 eV

(Ag₁). For both Al- and OH-terminated surfaces, the adsorption energy displays a pronounced odd-even variation as a function of cluster size. The same pattern is calculated for Ag clusters in the gas-phase [23]. In comparison the odd-even variation on partially O-terminated alumina is shifted by one cluster size.

The vibrational spectra of each NO, NO₂ and NO₃, are calculated for the three differently terminated surfaces. Most vibrational eigenvalues are below 700 cm^{-1} and belong to the surface-adsorbate vibrations. The molecular vibrational modes are presented in Table 2. The asymmetric modes are known to be dipole active, unfortunately, determination of the intensity and/or if other modes are active is not possible within the used implementation at present.

There is a clear distinction between the vibrational spectra of NO₂ species adsorbed on bare α -Al₂O₃ and on the supported Ag clusters. For instance, the wavenumber of the asymmetric mode is at least 100 cm⁻¹ higher for the bare Al-terminated α -Al₂O₃ as compared to supported Ag clusters, see Table 2. For the Al- and OH-terminated surfaces, addition of Ag atoms clearly shifts the

Table 1

Calculated adsorption energies of NO, NO₂ and NO₃ on supported Ag_n clusters. The support is Al-terminated, OH-terminated and partially O-terminated α -Al₂O₃ surfaces, respectively.

	Al-terminated	OH-terminated	Partially O-terminated
NO			
$Ag_0/\alpha - Al_2O_3$	-0.20	0.05	2.70
$Ag_1/\alpha - Al_2O_3$	1.60	1.34	0.89
$Ag_2/\alpha - Al_2O_3$	0.68	0.32	1.69
$Ag_3/\alpha - Al_2O_3$	1.68	1.12	1.33
Ag_4/α - Al_2O_3	0.30	0.55	1.18
NO ₂			
$Ag_0/\alpha - Al_2O_3$	0.54	-0.06	-
$Ag_1/\alpha - Al_2O_3$	3.05	2.20	0.86
$Ag_2/\alpha - Al_2O_3$	1.70	0.79	1.95
$Ag_3/\alpha - Al_2O_3$	2.80	2.07	2.37
Ag_4/α - Al_2O_3	1.84	1.34	2.15
NO ₃			
$Ag_0/\alpha - Al_2O_3$	1.28	0.43	1.20
$Ag_1/\alpha - Al_2O_3$	3.94	2.98	1.43
$Ag_2/\alpha - Al_2O_3$	2.21	1.44	2.13
$Ag_3/\alpha - Al_2O_3$	3.12	2.47	2.97
Ag_4/α - Al_2O_3	2.87	2.01	1.707

asymmetric wavenumbers of adsorbed NO₂ molecules towards the corresponding wavenumbers obtained for NO₂ adsorbed on the bare Ag(111) surface (see Table 2). This effect is owing to charge transfer from the Ag clusters to the NO₂ molecule, thus forming nitrite (NO₂⁻) species. Silver clusters on the partially O-terminated surface do not show the same behaviour since these species are positively charged when anchored to the partially O-terminated surface.

4.2. Experimental characterization of adsorbed NO_x surface species

The evolution of surface species during adsorption of NO and NO₂ was monitored by DRIFT spectroscopy (Figs. 3 and 4). Adsorp-

tion of NO on α -alumina results in two main adsorption features (Fig. 3a), one strong with peaks at 1630 and 1590 cm⁻¹ and one weaker with peaks at 1310 and 1270 cm⁻¹. In the OH stretching region, two negative peaks at 3750 and 3720 cm⁻¹ evolve with time. Simultaneously, a broad feature grows between 3700 and 3100 cm⁻¹ (not shown). On the Ag/ α -alumina sample, NO adsorption results in the evolution of two minor peaks at 1515 and 1235 cm⁻¹ (Fig. 3b). In the OH stretching region, only a very weak negative band is observed around 3730 cm⁻¹.

Adsorption of NO₂ on α -alumina shows similar features as NO adsorption, see Fig. 4a. In addition, during the first few minutes of adsorption, a peak at 1225 cm⁻¹ is visible. With time, this peak disappears or overlap with the much stronger 1260-peak. The OH stretch region shows similar peaks as for NO adsorption on α alumina. On Ag/ α -alumina (Fig. 4b), NO₂ adsorption results in a strong broad band centred around 1350 cm⁻¹ and weaker peaks at 1630 and 1600 $\rm cm^{-1}$, similar to the strong peaks observed for the α -alumina sample. The band centred around 1350 cm⁻¹ seems to evolve from two peaks, which are formed after a few minutes of adsorption, at 1320 and 1400 cm⁻¹, respectively. During the first 5 min of adsorption, a peak develops at 1235 cm⁻¹. However, upon longer exposure this peak overlaps with other adsorption features and/or disappears. In addition, a peak is observed at 1758 cm⁻¹. In the OH stretching region only a very weak negative band evolves with time around $3730 \, \text{cm}^{-1}$.

5. Discussion

Adsorption of NO_x surface species on various metal oxidebased materials have been widely investigated and discussed in the scientific literature, see *e.g.* [3,28]. The state and structure of NO_x surface species depend on the adsorbent material and on the reaction conditions. Infrared spectroscopy has often been used to distinguish between different types of surface species (like nitrite- and nitrate-species) as well as how the species are coordinated to the surface, *e.g.* monodentate, bidentate and bridged (see Fig. 2). The different species have all spectral features within

Table 2

Calculated wavenumbers (cm⁻¹) of the asymmetric (ν_{as1} , ν_{as2}), symmetric (ν_s), scissor (δ_s) and umbrella (ω) modes of NO, NO₂ and NO₃ on (a) supported Ag_n clusters. The support is Al-terminated, OH-terminated and partially O-terminated α -Al₂O₃ surfaces, respectively, and (b) Ag(111) surface (from [35]).

(a)	Al-terminated	OH-terminated	Partially O-terminated
$\begin{array}{l} \alpha - Al_2O_3 \\ NO (\nu) \\ NO_2 (\nu_{as}, \nu_s, \delta_s) \\ NO_3 (\nu_{as1}, \nu_{as2}, \nu_s, \omega) \end{array}$	1848	1884	-
	1548, 1093, 719	1618, 1301, 710	-
	1506, 1292, 957, 732	1370, 1338, 1076, 768	1514, 1290, 937, 757
$\begin{array}{l} {\rm Ag}_{1}/\alpha {\rm -Al}_{2}{\rm O}_{3} \\ {\rm NO}\left(\nu\right) \\ {\rm NO}_{2}\left(\nu_{as},\nu_{s},\delta_{s}\right) \\ {\rm NO}_{3}\left(\nu_{as1},\nu_{as2},\nu_{s},\omega\right) \end{array}$	1649	1658	1939
	1374, 1215, 771	1435, 1154, 796	1681, 1315, 756
	1541, 1240, 1027, 744	1574, 1240, 962, 762	1622, 1207, 988, 749
$\begin{array}{l} {\rm Ag_2}/\alpha {\rm -Al_2O_3} \\ {\rm NO} \left(\nu \right) \\ {\rm NO_2} \left(\nu_{as}, \nu_s, \delta_s \right) \\ {\rm NO_3} \left(\nu_{as1}, \nu_{as2}, \nu_s, \omega \right) \end{array}$	1401	1792	1856
	1276, 1232, 758	1390, 1243, 764	1618, 1082, 823
	1576, 1237, 1051, 745	1505, 1187, 1020, 760	1498, 1277, 984, 762
$\begin{array}{l} Ag_{3} / \alpha - Al_{2} O_{3} \\ NO \left(\nu \right) \\ NO_{2} \left(\nu_{as}, \nu_{s}, \delta_{s} \right) \\ NO_{3} \left(\nu_{as1}, \nu_{as2}, \nu_{s}, \omega \right) \end{array}$	1595	1591	1619
	1374, 1218, 785	1289, 1260, 767	1582, 1064, 775
	1556, 1241, 1025, 746	1525, 1185, 1006, 752	1467, 1171, 1001, 750
$\begin{array}{l} Ag_{4} / \alpha - AI_{2}O_{3} \\ NO \left(\nu \right) \\ NO_{2} \left(\nu_{as}, \nu_{s}, \delta_{s} \right) \\ NO_{3} \left(\nu_{as1}, \nu_{as2}, \nu_{s}, \omega \right) \end{array}$	1674	1780	1518
	1327, 1242, 728	1347, 1236, 771	1611, 1056, 811
	1614, 1290, 924, 750	1566, 1167, 1015, 747	1524, 1252, 969, 744
(b)	Ag(111)(cm ⁻¹)		
$ \begin{array}{l} NO \left(\nu \right) \\ NO_2 \left(\nu_{as}, \nu_{s}, \delta_{s} \right) \\ NO_3 \left(\nu_{as1}, \nu_{as2}, \nu_{s}, \omega \right) \end{array} $	1647 1371, 1226, 762 1608, 1159, 973, 752		

Fig. 3. Evolution of surface species during NO adsorption at 25 $^\circ$ C over (a) α -alumina and (b) Ag/ α -alumina.

a narrow region ($1800-1100 \text{ cm}^{-1}$), which gives rise to overlapping bands and obstructs exact assignment. However, using first-principles calculations of vibrational frequencies for different NO_x surface species may provide the possibility of identification.

In this work, the main NO_x related features observed over α -alumina are two broad features with strong peaks at 1630 and 1590 cm⁻¹ and weaker peaks at 1310 and 1270 cm⁻¹. On the Ag/ α -alumina sample, NO₂ adsorption gives rise to a strong broad band centred around 1350 cm⁻¹, and a broad feature with peaks at 1630 and 1600 cm⁻¹. In the literature, bands in the spectral regions 1650–1500 and 1300–1170 cm⁻¹ have generally been assigned to the asymmetric stretch vibrations of nitrates on metal oxides *e.g.* [29,30]. However, the large amount of vibrational modes (Table 3) in this frequency range stresses the difficulty of assignment. Nevertheless, the literature data suggests that surface species found in the present experiments are combinations of surface nitrite- and nitrate-species and/or adsorbed NO₂ species.

In Table 2, the calculated vibrational modes of NO, NO₂ and NO₃ on α -alumina and Ag_n (n = 1-4) clusters supported on α -alumina are shown. When the calculated values are compared with the experimental results it is evident that the surface species are combinations of nitrite- and nitrate-species and, in some cases, also adsorbed NO₂. For comparison, the calculated vibrational modes for NO, NO₂ and NO₃ on Ag(1 1 1) surface are shown in Table 2. As the

Fig. 4. Evolution of surface species during NO_2 adsorption at 25 $^\circ C$ over (a) α -alumina and (b) Ag/ α -alumina.

particles in the present study are large (likely >5 nm), these values are applicable for the interpretation of the experimental results.

In Figs. 5 and 6, the vibrational modes for NO₂ and NO₃ on α alumina and supported Ag_n (n=1-4) clusters are visualised and compared to the experimental spectra. It is clearly seen, that the cluster size and the surface termination influence the peak positions. Comparison with the broad features in the experimental spectra gives reason to assume several types of NO_x surface species on different types of sites. Thus, it is likely that the powder Ag/α alumina sample contains a variety of metal sites as well as different surface terminations that result in several, sometimes overlapping, peaks. In this sense, the spectra obtained from the DRIFTS experiments are mean-values. Due to the overlapping bands, the peaks in the resulting spectra are difficult to assign unambiguously. Instead these spectral features may be associated with combinations of several types of species, such as NO, NO₂ and NO₃. This also implies that it is not straightforward to ascribe peaks to specific adsorption configurations.

However, by the use of previous assignments together with calculated wavenumbers in the present work, some conclusions regarding surface species are possible. The spectral features in the $1650-1200 \text{ cm}^{-1}$ range can be assigned to a combination of nitrite- and nitrate-surface species as well as adsorbed NO₂. Over the Ag-free α -Al₂O₃, the broad feature at $1680-1460 \text{ cm}^{-1}$ may be

Table 3

Literature assignments of NO_x surface species. The table refers to representative sources.

NO _x surface specie	Wavenumber (cm ⁻¹)	System	Ref.
Adsorbed NO_x species Adsorbed NO_2 species Monodentate nitrite (NO_2^-) Nitro (NO_2^-) Chelating nitro-nitrito (NO_2^-)	1560 1615 1470-1450 1440-1335 1520-1390	Ag/Al ₂ O ₃ , Al ₂ O ₃ Ag/Al ₂ O ₃ Me/oxide Me/oxide Me/oxide	[36,37] [38] [3] [3] [3]
Bridging bidentate nitrite (NO2 ⁻)	1220–1205 1230	Me/oxide Ag/Al ₂ O ₃	[3] [37]
Nitrite (NO ₂ ⁻) Adsorbed N ₂ O ₄	1235 1758–1730, 1359–1368	Ag/Al ₂ O ₃ , Al ₂ O ₃ Me/oxide	[36] [3]
Monodentate nitrate (NO ₃ ⁻)	1530–1480, 1290–1250 1558, 1297 1550, 1245	Me/oxide Ag/Al ₂ O ₃ Ag/Al ₂ O ₃	[3] [38] [37]
Bidentate nitrate (NO ₃ ⁻)	1565–1500, 1300–1260 1586, 1248 1590, 1295	Me/oxide Ag/Al ₂ O ₃ Ag/Al ₂ O ₃	[3] [38] [37]
Bridging nitrate (NO ₃ ⁻)	1650–1600, 1225–1170 1615	Me/oxide Ag/Al ₂ O ₃	[3] [29]
Nitrate (NO ₃ ⁻)	1550, 1250 1590, 1305	Ag/Al_2O_3 , Al_2O_3	[36]
Ionic NO ₃ -	1380	Me/oxide	[3]

Fig. 5. Vibrational spectra of NO₂ adsorption at 25 °C on α -alumina, obtained from measurements (grey dotted line), and theoretical calculations of NO₂ (left-hand side) and NO₃ (right-hand side) species on the surface. The calculations are furthermore separated according to the actual surface termination, Al- (black), OH- (red) and partially O- (blue), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 6. Vibrational spectra of NO₂ adsorption at 25 °C on Ag/ α -alumina, obtained from measurements (grey dotted line), and theoretical calculations of NO₂ (left-hand column) and NO₃ (right-hand column) species on the surface. The calculations are furthermore separated according to the actual surface termination, Al- (upper row), OH-(middle row) and partially O- (bottom row), respectively. The color code refers to the Ag cluster size, Ag₁ (black), Ag₂ (red), Ag₃ (green) and Ag₄ (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

109

assigned to surface nitrate (NO_3^-) species and/or loosely bound NO_2 (see Tables 2 and 3 and Fig. 5). Nitrite (NO_2^-) species are not likely to form directly over the Ag-free alumina sample as the charge transfer from alumina to NO_2 is not complete (0.57 electrons).

Experimentally, a broad band is formed between 1440 and 1260 cm⁻¹ during NO₂ adsorption over Ag/ α -Al₂O₃. This corresponds to nitrite species (see Tables 2 and 3 and Fig. 6). Over the Ag/α -Al₂O₃ sample, especially in the case of Al- and OH-terminated surfaces, nitrites are likely to form owing to charge transfer from the silver cluster to the NO₂ molecule. The charge transfer is calculated to be 0.84, 0.62 and 0.24 electrons for the Al-, OH- and partially O-terminated surfaces, respectively. Furthermore, using the results from the calculations, peaks in the area 1630-1590 cm⁻¹ can be assigned to loosely bound NO₂ and the broad band(s) at 1600–1460 cm⁻¹ can be attributed to nitrate surface species (Fig. 6). The peak at 1758 cm^{-1} has been ascribed to the asymmetric stretching of NO₂ originating from N_2O_4 [3,29,31,32]. This is not likely as the peak is not present for the Ag-free sample. Alternatively, this peak may be attributed to a combinational mode for NO₃ stretching vibrations of ionic nitrate [33]. In the OH stretching region, the peaks at 3750 and 3720 cm⁻¹ and the broad feature between 3700 and 3100 cm⁻¹ are assigned to OH groups on the alumina surface and to perturbed OH stretching vibrations, respectively [34].

6. Conclusion

In this work, the adsorption of NO_x species on α -alumina and Ag/ α -alumina has been investigated by *in situ* DRIFT spectroscopy and DFT calculations. The measured IR spectra show broad features that can be assigned to different NO_x surface species. This is a manifestation of the heterogeneous nature of the samples, including different surface terminations and adsorption sites. As a consequence, exact assignments of specific surface species, especially with specific configurations on the surface, are difficult to obtain. The results from the calculations show that different sizes of the silver clusters and different surface terminations on α -alumina strongly influence the positions of the vibrational modes. In this sense, first-principles calculations can guide the assignment of NO_x surface species.

Acknowledgements

This work is financially supported by MISTRA (The Foundation for Strategic Environmental Research), and has been performed as part of the E4 programme (Energy Efficient Reduction of Exhaust Emissions from Vehicles). The work has been performed at the Competence Centre for Catalysis, which is financially supported by Chalmers University of Technology, the Swedish Energy Agency and the member companies: AB Volvo, Volvo Car Corporation, Scania CV AB, GM Powertrain Sweden AB, Haldor Topsø A/S and The Swedish Space Corporation.

References

- [1] R. Burch, Catal. Rev. Sci. Eng. 46 (2004) 271.
- [2] K. Shimizu, A. Satsuma, Phys. Chem. Chem. Phys. 8 (2006) 2677–2695.
- [3] K.I. Hadjiivanov, Catal. Rev. Sci. Eng. 42 (2000) 71
- [4] P. Broqvist, H. Grönbeck, E. Fridell, I. Panas, Catal. Today 96 (2004) 71.
- [5] P. Broqvist, H. Grönbeck, E. Fridell, I. Panas, J. Phys. Chem. B 108 (2004) 3523.
- [6] A. Desikusumastuti, T. Staudt, H. Grönbeck, J. Libuda, J. Catal. 255 (2008) 127.
- [7] K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, Science 282 (1998) 265.
- [8] X.G. Wang, A. Chaka, M. Scheffler, Phys. Rev. Lett. 84 (2000) 3650.
- [9] J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Science 277 (1997) 788.
- [10] S.R. Bahn, K.W. Jacobsen, Comput. Sci. Eng. 4 (2002) 56.
- [11] B. Hammer, L.B. Hansen, J.K. Norskov, Phys. Rev. B 59 (1999) 7413.
- [12] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
- [13] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.
- [14] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
 [15] L. Bengtsson, Phys. Rev. B 59 (1999) 12301.
- [16] R.D. Johnson, NIST Computational Chemistry Comparison and Bench-mark Database, NIST Standard Reference Database Number 101, Release 12, 2005 (http://srdata.nist.gov/cccbdb).
- [17] A. Hellman, H. Grönbeck, J. Phys. Chem. C 113 (9) (2009) 3674.
- [18] L. Kylhammar, A. Palmqvist, M. Skoglundh, Top. Catal. 42-43 (2007) 119.
- [19] H.H. Ingelsten, A. Palmqvist, M. Skoglundh, J. Phys. Chem. B 110 (2006) 18392.
- [20] R. Matarrese, H.H. Ingelsten, M. Skoglundh, J. Catal. 258 (2008) 386.
- [21] R. Meyer, Q.F. Ge, J. Lockemeyer, R. Yeates, M. Lemanski, D. Reinalda, M. Neurock, Surf. Sci. 601 (2007) 134.
- [22] Z. Lodziana, J.K. Norskov, P. Stoltze, J. Chem. Phys. 118 (2003) 11179.
- [23] H. Grönbeck, A. Hellman, A. Gavrin, J. Phys. Chem. A 111 (2007) 6062.
- [24] R.W.G. Wyckoff, Crystal Structures, vol. II, John Wiley & Sons, New York, 1963.
- [25] A. Hellman, H. Grönbeck, Phys. Rev. Lett. 100 (2008) 116801.
- [26] P. Broqvist, I. Panas, E. Fridell, H. Persson, J. Phys. Chem. B 106 (2002) 137.
- [27] C.W. Yi, J.H. Kwak, J. Szanyi, J. Phys. Chem. C 111 (2007) 15299.
- [28] M.A. Hitchman, G.L. Rowbottom, Coord. Chem. Rev. 42 (1982) 55.
- [29] S. Kameoka, Y. Ukisu, T. Miyadera, Phys. Chem. Chem. Phys. 2 (2000) 367.
- [30] K. Shimizu, H. Kawabata, A. Satsuma, T. Hattori, J. Phys. Chem. B 103 (1999) 5240.
- [31] Q. Sun, Z.X. Gao, B. Wen, W.M.H. Sachtler, Catal. Lett. 78 (2002) 1.
- [32] J. Szanyi, M.T. Paffett, J. Catal. 164 (1996) 232.
- [33] A. Desikusumastuti, M. Happel, K. Dumbuya, T. Staudt, M. Laurin, J.M. Gottfried, H.P. Steinruck, J. Libuda, J. Phys. Chem. C 112 (2008) 6477.
- [34] G. Busca, Phys. Chem. Chem. Phys. 1 (1999) 723.
- [35] A. Hellman, I. Panas, H. Grönbeck, J. Chem. Phys. 128 (2008) 104704.
- [36] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, J. Catal. 187 (1999) 493.
- [37] P. Sazama, L. Capek, H. Drobna, Z. Sobalik, J. Dedecek, K. Arve, B. Wichterlova, J. Catal. 232 (2005) 302.
- [38] J. Shibata, K. Shimizu, S. Satokawa, A. Satsuma, T. Hattori, Phys. Chem. Chem. Phys. 5 (2003) 2154.